The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 1 0 1 X 1 X 1 1 1 1 X X 1 1
0 X 0 0 0 0 0 X^2 X^2 X X^2+X X X^2 X^2+X X^2+X X X^2+X X^2+X X 0 X X X X X X^2 0 X X X 0 X X
0 0 X 0 0 X^2 X^2+X X X X X X X^2+X X^2 X^2+X X^2 X^2 X^2 X^2+X X^2+X 0 X^2+X X^2 X X X^2 X^2+X X^2 X X^2+X X^2+X 0 X^2
0 0 0 X 0 X^2+X X^2+X X X^2 X^2+X X^2+X 0 X X^2+X 0 X^2+X X^2 X^2 X^2 X^2 X^2+X 0 0 X^2 X^2+X 0 0 X X^2 X^2+X X 0 0
0 0 0 0 X X X^2 X^2+X X X^2+X X^2 X^2 0 X X 0 X 0 X 0 X X^2 X X^2+X X X^2+X 0 X^2 X X^2+X X^2+X X^2+X 0
generates a code of length 33 over Z2[X]/(X^3) who´s minimum homogenous weight is 28.
Homogenous weight enumerator: w(x)=1x^0+250x^28+52x^29+240x^31+391x^32+440x^33+240x^35+261x^36+52x^37+112x^40+8x^44+1x^52
The gray image is a linear code over GF(2) with n=132, k=11 and d=56.
This code was found by Heurico 1.16 in 22 seconds.